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BENDING OF WEDGELIKE PLATES WITH ELASTICALLY-FASTENED 

OR REINFORCED EDGES' 

V. V. RJDJT and L. Ia. TIKHONENKO 

An exact solution is obtained for a number of problems associated with the investi- 

gation of the bending of wedgelike plates with either elastically supported orclamp- 

ed edges or reinforced by an elastic bar. The following problems are examined: 1) 
both edges of the plate resist deflections elastically but do not resist rotations; 

2) one edge of the plate is rigidly clamped, while the second is elastically resist- 

ive to deflection but not resistive to rotation; 3) both edges ofasupportedplate 
resist rotation elastically; 4) one edge of the plate is free, while the other is 

supported and resists rotation elastically; 5) two wedgelike plates with different 
apex angles and different elastic properties are interconnected by means of an 

elastic bar operating only in bending. The exact solutions of the problems listed 
are used to investigate the nature of the singularities in the forces at the angular 

point of the plate and at infinity. 

A method of solving problems on the contact between a semi-infinite beam and an elastic 

wedge is proposed in /1,2/, which is based on using the Carleman boundary value problem for 

a strip. The method of /1,2/ is applied to problems l)- 5) below. Each of the listed prob- 

lems can be made complicated by assigning inhomogeneous boundary conditions. In this case, 

the auxiliary problem with classical boundary conditions reduces to a problem on the solution 

of a homogeneous equation with inhomogeneous nonclassical boundary conditions. Such a trans- 

formation is equivalent to replacing the external load by a load acting only on elastically 
framed edges, and is considered in detail in the example of problem 1). Problems I)- 5) are 

examined in Sects. l-5, respectively. 

1, Problem 1) is formulated as follows: 

A% (r, Et) =- q (r, 0)/D, -a < 0 .< a, 0 < r < 00 

e=ja, ,Zl" m*., w - f* -= k (q 7 V,) 

I{ u+(r) i w: (d + I;-’ Iw (r, a) -i- w (r, - a)1 qi (a) t -- ._ 
0 

(1.1) 

(1.2) 

(1.3) 

Here u,(r,e), Y, D are, respectively, the deflection, Poisson's ratio, and stiffness of the 

plate, k is the stiffness coefficient of the elastic restraint Me, M,, V,, V, are bending 

moments and generalised transverse forces, q(r,0) is a given load acting on the plate, mf (r), 
L.+(T) and f*(r) are respectively, the moments, forces, and initial deflections given on the 

edges 6 = +a. 

The equilibrium conditions (1.2) assure uniqueness of the solution of the problem posed, 
which is sought in the form 

m (r, 6) = % (r, 6) + ml (rr 0) + w* (r, 0) 

We have the following equations, boundary conditions, and equilibrium conditions for wi 

A%, (r, 0) = q (T, ‘3)/D, A$ (r, 0) = 0 (1.4) 

0=&u, MF’ = rn* (r), Mt’ = 0 

a = f* + kv+, wi = 7 k (VP’ - V,) 
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The functions I%##) and V& 

i=1,- v*=v+; i=2, v*=v_; 
v, (r) = ‘Is [ vp (r, a) q= VF (r, - cl)] 

are determined in terms of it by means of (1.3)~ 
To find the function w0 it is sufficient to apply the Mellin transform (see /3/, for 

instance) 

(1.5) 

The scheme in /1,2/ should be used in addition to the transform (1.5) in determining the func- 
tions wi (i=1,2). 

Let us consider the problem for the function ~~(',8), whose solution we seek in the 
class of functions possessing an asymptotic 20, = 0 (1) for r-+0 , and w1 = 0 (Fe), e > 0 for 

r-+m. Taking account of the evenness of this problem and the first of the boundary condi- 
tions for w, , we obtain 

(1.6) 

Here x = (3 $ v)(l - v)-l, P = Q,, 8, is the line Rep = c f% in the plane of the complex 
variable p, where the constant c is determined by the class of desired functions, and 
should be selected from the band 1 (c (1. + E, in this case. 

Assuming 0 @) is analytic in the strip II, (R, = (C + h ( Re p ( c + 3 + 3n)), continuous 
in a closed strip R, ,and uniformly relative c <<a<<c + 3 

j I@(U+ it))2dt<const 
-m 

and requiringthat the function (1,6) satisfy the second boundary condition for w1 from (1.41, 
we arrive at the Carleman boundary value problem for a strip 

@@0 i-3) - hpo (~0% - 1)Ic (p&I’ fpo) = G (PO), Re PO = c (1.7) 

+&i-& Ko~p~__~i~2pl- px’-‘@n2a 
cos2pa+cosza 

G*(p)= TVA (r)rl*pdr 

The operations performedO in obtaining the problem (1.7) are legitimate for V, (r)rc+‘/aE&, 
(0,aa)and G, (p)~Wn (Hc is the class of functions satisfying the HGlder condition on the 
line B). 

By using the function 

Y @) =: Qt Ip)[hPi3 r (p - 1) sin 3qGP (1.8) 

we write the boundary condition (1.7) in the form 

y @@ + 3) -I- f( (PRY hf = G (Pc~ Re PO = e (1.91 
R (p) = -Ii, (p) tg rip/z 
G (p) = -G+ (p) [iVfPW @ + 2) cos np/21-' 

The desired function Y(p) has two simple poles p1 = 2 and pa = 4 in the strip II, .The 
coefficient K(p) has no zeroes , possesses the asymptotic K (p) = 1 + 0 (e-@IPJ), IpI+ 00, 
(!I = min(a,n/Z) , satisfies the Halder condition and, moreover, [arg K(p)] = 0. Then according 

to /1,2/, the solution of the problem (1.9) is given by the formulas 

y (‘I = ’ @) [4 j X (8 + 3)cSiZnfp - s)/3 + sin n (:- 2)/3 + 
(1.10) 
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Here C, and C, are arbitrary constants. 
For any integer n the function Y(p) is analytic in each strip n, with the exception 

of the points pI =: 3s + 2 and p1 -: 3n + 4, where simple poles are, and it has a jump on each 
line Q, where the limit values to the left of this line (Y_ (p)) and to the right (Y, (11) x 
Y(rjo)) are connected by the relationship 

y_ cp) r= K cp - 3n)Y+ (p) - (--1)“G (P - 34 P E % (1.11) 

We determine the arbitrary constants C, and C, by satisfying the equilibrium conditions (1.4) 
for pi, which result, when (1.6), (1.8) and (1.10) are taken into account, in the following 
equations for these constants: 

2C+(--1) + 3k-'h'/~x (z)c, = 0; 2 cos a[G+(O)-t- hk-‘Y(3)] =O (1.12) 

The exact solution of the problem (1.4) constructed for ~1 permits determination of the 

asymptotic of the elastic quantities in the plate. By using the scheme of /1,2/, and (1.3), 

(1.6), (1.8) and (l.lO), we find that the asymptotic 

W = O(W), nl, = 211" = O(r-*-v), J'r = b'" = O(r-2-V) (1.13) 

is valid as 
y = -- 1 -:- n (au-' 

r+oo. 

Let us investigate the behavior of these quantities at the point of the wedge whose asy- 

mptotic as r-t0 is determined by the poles of the integrands of the Mellin integrals obtain- 

ed in the half-plane He p<c. Since the expression (1.10) defines the function Y(p) which 

is analytic in the strip II,, we apply (1.11) to the solution constrcuted, i.e., we consider 
Y(p) in the strip rr-,. For example, the integral for the quantity A/, transformed in this 

manner has the form 

(1.14) 

F (p) : lhPW (p + 2) Y_ (p) ens np/2 - kh-‘G, (p)l (p + l)-lr-l-P 

Investigating the location of the poles of the integrand in (1.14), applying the theorem of 

residues, and (l-12), we obtain 
r+ 0, M, = 0 (r-l+b) (1.15) 

Here TV is the real part of the root of the equation xsin2pa -_sin2a : (I, Rcp)(~ which is 

closest to the line Rep ~~ 0. Only such roots are examined in all the transcendental equat- 

ions to be encountered below. The position of these roots as a function of the angle IX is 

described in /3/. 
The asymptotic of the deflections and the transverse forces is found analogously: 

r-+0, w = 0 (I), .lf,, = 0 (F-‘+p), ve = v, = 0 @-‘+‘I) (1.16) 

The expressions (1.11) permit determination of the next terms in the expansions of the asympt- 

otics (1.13), (1.15) and (1.16). It follows from (1.16) that as r-+0 the transverse force 
is bounded only for a ,< a* (c(* : '/+rccos x-l). Together with the asymptotics (1.13) and (1.15), 
this latter permits making the conclusion that the solution of the problem (1.4) for uil can 

be constructed according to the scheme mentioned only for a<a* since only in this case is 
the equilibrium condition for an angular element of the plate satisfied, and also the exist- 

ence of the integrals (1.5) is assured. 
Let us turn to the problem (1.4) for the .function W, whose solution we seek in theclass 

of functions possessing the asymptotics W2 = 0 (r*) CiS F--t 6; 6 > 0 and wz := 0 (Tee), s > - 6 as 
r+oo. In conformity with this, 52 is the line Rep :~ c (I- 6<c<li- e) in the Mellin 

integrals (1.5). Analogously to the solution of the problem for wi, we arrive at the Carle- 
man problem (1.7) with right side G_(p) and a coefficient having the form 

K, (p) -2 (sin 2pa + I_'x-' sin 2a)(cos 2pa - cos 20.)' (1.17) 

Partial factorization of the problem (1.71, (1.17) is realized by the function 

Y (p) _~ (I) (p) [J."W (11 - 1) cos np/21-' 

which has the single pole p = 3 in the strip rl,,. Therefore, this function is determined by 
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the expression 

(1.18) Y (PI = x (P) [&S G (s) ds 

X (S ,- 3)sinn (p -S)/3 +&I 
$1 

The function X(p) is defined in (1.10). The constant C is determined from the equilibrium 

condition (1.4) for w2 and is evaluated by the formula 

C = - 2hG(O) [3hX(3)]-’ 

Finally, the solution of the problem (1.4) for w2 is expressed in terms of the function 

(1.18) as follows 

w2 (r,e)= +&+ s Az(p,8)?N:'r (p - 1) ‘Z’(p)cosnp/2r~-~dp 
!! 

(1.19) 

A, (p, 8) = (p + x) [sin (p - 1) Wsin (p - 1)a - sin @ + 1) e/sin @ + 1) ul 

The solution (1.19) results in asymptotic behavior of elastic quantities of the form 

rd03, w2 = 0 (W), M, = Me = 0 (r-‘-V), V, = Vs = 0(+-v) (1.20) 
r-+0, ?A?% = 0 (rlfy 
y=-1+n/2 ’ 

M, = ,lle = 0 (r-l+y, V7 = Ve = 0 (r-y 

Here p is the real part of the root of the equation xsin2pa f psin 2cz = 0. As follows from 

(1.19) and (l-20), in contrast to the problem for ~1 the solution of problem (1.4) for ~2 

can be obtained by the scheme described for apex angles ag n/4 + a*. This same scheme is 

applicable for the solution of problem 1) in the case when IlImped forces and moments are 

applied to the wedge apex. 

2, Problem 2) is formulated thus in the simplest case 

A% (r, 0) = 0 (2.1) 
e = a, w = 0, r-aOiae = 0, 8 = 0, jkfe = 0, w - k V, = u(~) 

The solution of problem (2.1) is sought in the class of functions possessing the asymptotic 

w = 0 (r*), 6 > - 1 as r-to, and w = o (Fe), e > - 6 as r-+00, in the form of the Mellin 

integral 

w(r, 8) =& 5 t 1 l I~~~(p - l)e+ A,cos@+ I)e-1. &sin@ - l)e+ &sin(p + l)Ol+Pdp (2.2) 
II 

Here Aj, Bj (j = 1, 2) are determined from the boundary conditions by the following relationships 

A, = - A, (p + X) (p - X)-I, Bj = bjb-’ Al, j = 1,2 

A, = 4 (1 - vmlWlr (p) Y+ (p) sin npi2 

The function X(p) is 

b, = - p - 1 + (p - I)-‘(p + x)(cos 2pa + p cos 2a) 

b,=-cos2ap+pcos2a-p-x, b-sin2c(p-psin2a 

defined in (l.lO), where the functions K(p) and G(p)are determined by 

(1.9) in which we should set 

Ko (p) == - b-’ [cos 2ap - 2x-‘p* sin% + (x" + 1) (2x)-'] 

G+(p)= fu(r)r’+Pdp 
i 

The arbitrary constant C is determined by the condition for correctness of the operations 

Y(f) = 8 performed during solution of the problem. 

The exact solution constructed results in the asymptotic formulas (1.20) in which y and 

p are the real parts of roots of the appropriate equations (sin2pa - p sin 2a) (p - I)-’ = 0 
and x sin2 pa + p*;in*cz - (1 + x)2/4 = 0. It is seen from the asymptotic found that the solution 
of the problem X2.1) can be sought in the form of the Mellin integral (2.2) for any a. Let 

us note that despite the unboundedness of the bending moment and the generalized transverse 

force at the plate apex (for those a for which p<2), the equilibrium conditions are 

satisfied for each element containing an angular point, i.e., the forces originating in the 

plate are self-equilibrated. In addition to the problem (2.11, a plate bending can be form- 

ulated where one edge is elastically supported (M, = 0, w - X.Vs = V(T)), while one of the 

classic conditions r-%Wae = Ve = 0; Me = w = 0; MR = V, = 0 is given on the other. However, 

there is no need to consider the first two problems, specially since they can be treated as 

the problem (1.4) for w1 and We, respectively, for half a plate. 

3, In the simplest case the axisymmetric component of the problem is equivalent to the 
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construction of a biharmonic function satisfying the boundary conditions 

0 1.~ & a, u? 0, A,,: + /,r-' awiae == m, (r) (3.1) 
in the domain Or_r<co--n ,+-U ..x. Here 1~ is the stiffness coefficient of the elastic sup- 

port, and m*(r) is the moment loading applied to the boundary. 

The solution of the problem in the class of functions possessing the asymptotic 

r--f 0, U> = o (rc), 6 , O and r --f 00, 1~' = o (r-:), E > - & 

has the form 

r~(r,O)=~~L,(p1~)I.(p)hl'R+(p)'T~(p)r1-~sin~p/2dp 

n 
(3.2) 

L, (p,' O) == cos (p - 1)Oicos (p - 1)a - 

cos (p + 1) B/cos(p -t 1) CL 

K* (p) r (cos Zpa & cos 2a) (sin 2pa =k p sin 2a)-‘, h = 4Dk-’ 

Here the function, analytic in the strip c.e<Rep:<,c$-1 , is a solution of the following 
Carleman problem: 

Y (p i 1) f K (p) Y (p) = C (p), ZC (p) = K”(p) 14 nd2 (3.3) 

G (p) = C, (p) [hp+‘r (p -1~ 1) cos np/Z]-‘, G, (p) = i 
0 m*(r)rP Idr 

(3.4) 

!! 

The asymptotic expressions for the quantities are determined by (1.20) in which 1' is the 

real part of the root of the equation sin 2pa + p sin 2a = 0 and p =: -1 + jt (2a)-I. 
This asymptotic shows that the solution of the problem (3.1) can be sought in the form 

(3.2) for a< n/4. 
The formulation of the problem 3) for the antisymmetric component differs from the 

symmetric case only by the boundary conditions 

8 -=: + CI, u? ~- n, * Al,, - /,r-' 8zD / a0 -= !IL_ (1.) 

The following integral yields its solution 

w (r, o)= & 5 L_ (p, 0) I? (p) h”K- (p) T”+ (p) rl-p sin xp/Z dp 
II 

(3.5) 

L_ (p, 0) = sin (p - 1) 8 / sin (p - 1) a - sin (p -+ 1) @sin (p $ 1) a 

Here the function Y(p) is determined by (3.3) and (3.4), and the function K- (p) is determin- 

ed in (3.2). 
The asymptotic of the problem has the form (1.20) in which v is the appropriate solution 

of the equation (p - l)-'(sin 2pa - p sin 2a) = 0 and IL := -1 + na-' . 
We note that (3.5) yields the solution of the antisymmetric componentof problem 3) for 

w < n/2. 

4, Let us consider the bending problem for a plate with one edge supported and elastically 

resistive to rotation by giving one of the classic boundary conditions 

The first two variants can be considered as symmetric and antisymmetric components of the 

problem 3) for half a plate. Let us examine just the last variant. In the simplest case it 
is equivalent to constructing a biharmonic function w(r, 0) satisfying the conditions 

in the domain O,r<w, O~O.,a. Here nz(r) is the moment loading applied to the plate 
edge I3 = 0. We write the solution of this problem in the form of a Mellin integral 

u?(r.O)r-&S L,(p,O)n-'h"r(p)~", (p)rl-l’cns.-rp/2dp 
‘1 
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L, Q, 9) = cos @ + 1) 0 - CDS (p - 1) 0 + a, sin @ + 1) 0 + a2 sin (P - 1) e 
a = sin'pa + p%-'sin% - (1 + x)" (4x)-’ 
a, = cos zpa + px-’ cos2a - x-1 (p - 1) a* = co9 2pa - 

px-’ cos 2a + x-1 (p - I)-’ (p” - x”) 

“(P)=‘(P) [&S .(.v;.~~~i,~@-.q) + sinni-_l) J 
II 

c (0) 
r=* 

m 

G (p) = - Go(p) [WT (1 f p) sin n~/2]-~, Go (p)= 1 m (r) r*-ldr 
Cl 

The contour of integration Dis selected exactly as in problem 3), and the function X(p) is 
determined in (3.4), where 

K (p) = - (sin 2pa - px-’ sin 2a) a-l ctg npi2 

The asymptotic of problem 4) is determined by (l.ZO), where y and p are, respectively, the 
real parts of roots of the equations 

x sin’ up + p2 sin% - (1 + x)214 = 0 
x sin 2pa - p sin 2a := 0 

5, Let us investigate the bending problem of two wedgelike plates occupying the domain 

A:(O<r<m, -fi<<e<O) and B: (0.<r(oo, 0 < 8 < a)which are hinge-supported along the 
edges 0 = - fi and 6 = a andconnected by a bar not operating under torsion. The minus super- 
script denotes elastic quantities in the domain A, while the plus superscript denotes quant- 
ities in domain B. The problem under consideration reduces to the construction of two bi- 
harmonic functions w-(r, 0) and W+ (r, 0) satisfying the following conditions 

e=._- fi+- =~a- -0; fj Ea,w+ =MO+ =o (5.1) 
63 = 0, Do $w i 8r4 = V,+ - Ve- -I- g (r), w- = W+ = w 

ao- I de = a~+ I ae, Mu- = iwe+ 
in the domains A and B. Here w is the beam deflection, and q(r) is the load acting on it. 
The solution of the problem (5.1) in the class of functions r-+0, wU+ = o(F), E> 1 and r--f 00, 
Wf = 0 (rb), c > - 6 is respresentable in the form of a Mellin integral 

W* (r, 0) = & i R* (p, 0) h”r (p - 1) a’, (p) rl-J’ cos np/2 dp (5.2) 

I! 

R* (p, e) = A, cos (p - I) 8 -i- A, cam (P + 1) e + 

B,* sin (p - 1) tl + B,* sin (p + 1) 0 

A, = n, sin (p - 1) a sin (p - 1) /3, A,= - a, sin (p -I- 1) a:/, 

sin (p + 1) j3 

B,- = a, sin (p - 1) cz cos (p - 1) /3, B,-= - uz sin (p + l)a X 

cos (p -t 1) B 

B1+ = - a, cos (p - 1) a sin (p - 1) p, I?,+= uz cos (p + l)a,. 

sin @ + 1) B 

a, = (p + 1) cosec I@ + B) (P - 1)1, u2 = (P - 1) cosec [(a. + /3) (p + I)1 

'P-(p)= X(P) [&S 
G(S) ds 

X (S 7 I) sin JI (p - s) 1 $2 

rr 

Q (p) = ( g(r) rp+l dr, K(p) = n,az (p2 - lj-’ (A, + ilz) ctg npi2 
6 

The asymptotic of the elastic quantities has the form (1.20), where y = - 1 f n('J $ p)-' 
and p is the real part of the root of the equation 

sin 2p (a + fi) - cos 2a sin 2pp - cos 2fl sir1 2pa + 

p [sin 2 (a + p) - sin 2or cos 2pfi - sin 2g cos 2pal = 0 

Besides the problem 5) considered, a cycle of problems can be mentioned about the bend- 
ing of wedgelike plates reinforced by elastic bars whose exact solution is constructed by the 
method elucidated. Among this cycle and problems in which the bar having only finite bending 
stiffness differs by the contact conditions on the edge 0=0. For 8=0 the first two 
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conditions in (5.1) are common and the last can be replaced by any of the following pairs of 

conditions: 1) r-'JW~ / ‘xl = f-1 <,u-ia0 = 0, 2) Iwe+ = M,- = 0, 3) r'Jw' / JH = .W,- =. U or Aft,+ = T-QUI- / JO = 0. 
The mentioned method is also used to construct the solution of problems in which there is 

a bar having a finite torsional stiffness at the edge 8=0 instead of the bar having the fin- 

ite bending stiffness. For such bars the general conditions are 

~-'Ju>. / i10 = T-VW-/ JO; GOr-'Jw i JO =I Mei - M,- -i-m (r) 

to which any of the following pairs of conditions must be appended: 
1) w+ = u)-, v,,+ = p,-; 2) cl.+ _ w- X 0 

3) Vt,' = v,- = 0; 4) I,;+ = v,,- = 0 

or w-= v,+=o. In all these problems, the hinge-support conditions on the edges O= -b,e= a 

can be replaced by other classical conditions which are not absolutely identical on both edg- 

es. Moreover, the materials of the wedges A and B can have different elastic properties up 

to anisotropy. Among this cycle of problems are also problems on the bending of a wedgelike 

plate one of whose edgesis clamped classically while the other is reinforced by an elastic bar 

(beam), where this reinforcement is described by the conditions 

D,JWJl4 = g (r) - v,, M, == m (r) 

This last condition can be replaced by the condition r+WJe = v(r). 

The authors are grateful to G. Ia. Popov for continued attention to the research. 
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